梯度下降使用Python和NumPy问题,怎么解决

发布网友

我来回答

1个回答

热心网友

它遵循LMS(Least Mean Square是)准则,该准则是通过使似然函数最大推导得出,即得出的参数使得样本数据集出现的概率最大。常用的迭代方法有两种:批量梯度下降法(Batch Gradient Descent)和随机梯度下降法(Stochastic Gradient Descent)。梯度下降算法对局部极值敏感,但是对于线性回归问题只有整体极值,没有局部极值,所以在这种情况下,算法总是收敛的。对于随机梯度下降算法,其收敛速度要快于批量梯度下降算法,但是它在最小值附近震荡的幅度较大,所以可能不会收敛于true minimum

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com