发布网友 发布时间:2022-04-22 08:02
共2个回答
热心网友 时间:2022-06-18 06:08
偏导数
在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。
定义
x方向的偏导
设有二元函数z=f(x,y),点(x0,y0)是其定义域D内一点.把y固定在y0而让x在x0有增量△x,相应地函数z=f(x,y)有增量(称为对x的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。
如果△z与△x之比当△x→0时的极限存在,那么此极限值称为函数z=f(x,y)在(x0,y0)处对x的偏导数(partial derivative)。记作f'x(x0,y0)。
y方向的偏导
函数z=f(x,y)在(x0,y0)处对x的偏导数,实际上就是把y固定在y0看成常数后,一元函数z=f(x,y0)在x0处的导数
同样,把x固定在x0,让y有增量△y,如果极限存在那么此极限称为函数z=(x,y)在(x0,y0)处对y的偏导数。记作f'y(x0,y0)
求法
当函数z=f(x,y)在(x0,y0)的两个偏导数f'x(x0,y0)与f'y(x0,y0)都存在时,
我们称f(x,y)在(x0,y0)处可导。如果函数f(x,y)在域D的每一点均可导,那么称函数f(x,y)在域D可导。
此时,对应于域D的每一点(x,y),必有一个对x(对y)的偏导数,因而在域D确定了一个新的二元函数,
称为f(x,y)对x(对y)的偏导函数。简称偏导数。
热心网友 时间:2022-06-18 06:08
∂z/∂x=1/(1+x²/y²)* 1/y=y²/(y²+x²)*1/y=y/(y²+x²)
∂z/∂y=1/(1+x²/y²)*(-x/y²)=-x/(y²+x²)
∂²z/∂x²=-y/(y²+x²)²* 2x=-2xy/(y²+x²)²
∂²z/∂y²=x/(y²+x²)* 2y=2xy/(y²+x²)²
∂²z/∂x∂y=[y²+x²-y*2y]/(y²+x²)²=(x²-y²)/(y²+x²)²