发布网友 发布时间:2022-04-22 09:37
共4个回答
热心网友 时间:2023-10-08 12:45
1.不等式的基本性质:
性质1:如果a>b,b>c,那么a>c(不等式的传递性).
性质2:如果a>b,那么a+c>b+c(不等式的可加性).
性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那么a+c>b+d.
性质5:如果a>b>0,c>d>0,那么ac>bd.
性质6:如果a>b>0,n∈N,n>1,那么an>bn,且.
例1:判断下列命题的真假,并说明理由.
若a>b,c=d,则ac2>bd2;(假)
若,则a>b;(真)
若a>b且ab<0,则;(假)
若a若,则a>b;(真)
若|a|b2;(充要条件)
命题A:a命题A:,命题B:0说明:本题要求学生完成一种规范的证明或解题过程,在完善解题规范的过程中完善自身逻辑思维的严密性.
a,b∈R且a>b,比较a3-b3与ab2-a2b的大小.(≥)
说明:强调在最后一步中,说明等号取到的情况,为今后基本不等式求最值作思维准备.
例4:设a>b,n是偶数且n∈N*,试比较an+bn与an-1b+abn-1的大小.
说明:本例条件是a>b,与正值不等式乘方性质相比在于缺少了a,b为正值这一条件,为此我们必须对a,b的取值情况加以分类讨论.因为a>b,可由三种情况(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到总有an+bn>an-1b+abn-1.通过本例可以开始渗透分类讨论的数学思想.
练习:
1.若a≠0,比较(a2+1)2与a4+a2+1的大小.(>)
2.若a>0,b>0且a≠b,比较a3+b3与a2b+ab2的大小.(>)
3.判断下列命题的真假,并说明理由.
(1)若a>b,则a2>b2;(假) (2)若a>b,则a3>b3;(真)
(3)若a>b,则ac2>bc2;(假) (4)若,则a>b;(真)
若a>b,c>d,则a-d>b-c.(真).
热心网友 时间:2023-10-08 12:46
1.不等式的基本性质: 性质1:如果a>b,b>c,那么a>c(不等式的传递性). 性质2:如果a>b,那么a+c>b+c(不等式的可加性). 性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那么a+c>b+d. 性质5:如果a>b>0,c>d>0,那么ac>bd. 性质6:如果a>b>0,n∈N,n>1,那么an>bn,且. 判断下列命题的真假,并说明理由. 若a>b,c=d,则ac2>bd2;(假) 若,则a>b;(真) 若a>b且ab<0,则;(假) 若a若,则a>b;(真) 若|a|b2;(充要条件) 本题要求学生完成一种规范的证明或解题过程,在完善解题规范的过程中完善自身逻辑思维的严密性. a,b∈R且a>b,比较a3-b3与ab2-a2b的大小.(≥) 强调在最后一步中,说明等号取到的情况,为今后基本不等式求最值作思维准备. :设a>b,n是偶数且n∈N*,试比较an+bn与an-1b+abn-1的大小. 本例条件是a>b,与正值不等式乘方性质相比在于缺少了a,b为正值这一条件,为此我们必须对a,b的取值情况加以分类讨论.因为a>b,可由三种情况(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到总有an+bn>an-1b+abn-1.通过本例可以开始渗透分类讨论的数学思想. 1.若a≠0,比较(a2+1)2与a4+a2+1的大小.(>) 2.若a>0,b>0且a≠b,比较a3+b3与a2b+ab2的大小.(>) 3.判断下列命题的真假,并说明理由. (1)若a>b,则a2>b2;(假) (2)若a>b,则a3>b3;(真) (3)若a>b,则ac2>bc2;(假) (4)若,则a>b;(真) 若a>b,c>d,则a-d>b-c.(真).
热心网友 时间:2023-10-08 12:47
1.不等式的基本性质:
性质1:如果a>b,b>c,那么a>c(不等式的传递性).
性质2:如果a>b,那么a+c>b+c(不等式的可加性).
性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那么a+c>b+d.
性质5:如果a>b>0,c>d>0,那么ac>bd.
性质6:如果a>b,那么b<a
这才是不等式的六个性质
热心网友 时间:2023-10-08 12:48
不等式性质1
不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:
如果a>b,那么a+m>b+m;
如果a<b,那么a+m<b+m。
不等式性质2
不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:
如果a>b,且m>0,那么am>bm;
如果a<b,且m>0,那么am<bm。
不等式性质3
不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:
如果a>b,且m<0,那么am<bm;
如果a<b,且m<0,那么am>bm。