您的当前位置:首页正文

如何求斜率

2022-05-24 来源:二三四教育网

斜率计算:ax+by+c=0中,k=-a/b。斜率,是表示一条直线(或曲线的切线)关于(横)坐标轴倾斜程度的量。它通常用直线(或曲线的切线)与(横)坐标轴夹角的正切,或两点的纵坐标之差与横坐标之差的比来表示。

“斜率”就是“倾斜的程度”。斜坡上两点A,B间的垂直距离h(铅直高度)与水平距离l(水平宽度)的比叫做坡度(或叫做坡比),用字母i表示,通常坡度i用分子为1的分数来表示。

解析几何中,要通过点的坐标和直线方程来研究直线通过坐标计算求得,使方程形式上较为简单。如果只用倾斜角一个概念,那么它在实际上相当于反正切函数值arctank,难于直接通过坐标计算求得,并使方程形式变得复杂。

坐标平面内,每一条直线都有唯一的倾斜角,但不是每一条直线都有斜率,倾斜角是90°的直线(即x轴的垂线)没有斜率。在今后的学习中,经常要对直线是否有斜率分情况进行讨论。

曲线斜率相关知识点:

1、曲线的上某点的斜率则反映了此曲线的变量在此点处的变化的快慢程度。

2、曲线的变化趋势仍可以用过曲线上一点的切线的斜率即导数来描述。导数的几何意义是该函数曲线在这一点上的切线斜率。

3、当f'(x)大于0时,函数在该区间内单调递增,曲线呈向上的趋势;当f'(x)小于0时,函数在该区间内单调减,曲线呈向下的趋势。

4、在区间(a,b)中,当f''(x)小于0时,函数在该区间内的图形是凸(从上向下看)的;当f''(x)大于0时,函数在该区间内的图形是凹的。

显示全文